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Driven kinks in discrete chains: Phonon damping
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Phonon radiation is shown numerically to damp the motion of a relativistically drivenf4 soliton, even in the
extremely weak discreteness limit. At higher discreteness, the soliton mobility is characterized by a discon-
tinuous dependence on the driving force; jumps are related to phonon and breather-radiation thresholds.
Moreover, the speed of africtionlesssoliton cannot be lowered below a certain threshold value, or else it might
get trapped between two adjacent chain sites.
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I. INTRODUCTION

A variety of physical systems have been modeled in te
of an elastic string diffusing on a periodic substrate, rema
able examples being lattice dislocations, magnetic flux li
in type-II superconductors, triple lines on wetting surfac
magnetic spin chains, etc.@1#. All these string models belong
to the category of soliton-bearing theories, where str
transport results from thelateral diffusion of single solitons
~kinks or antikinks! connecting two adjacent substrate va
leys. Propagation of solitons in a viscous medium is by n
a fairly well-understood problem in the continuum lim
@2–6#. However, with a closer look, all the above-mention
physical systems imply a certain degree ofdiscreteness,
stemming from the atomistic structure of the solid pha
~i.e., of the string itself and/or of its environment! @6,7#.

There is one more reason for investigating the effects
discreteness: Simulation algorithms necessarily replac
continuous stringf(x,t) with a discrete chain$f i(t)%, by
coarse graining the spatial coordinatex as iDx with i
51, . . . ,N. At variance with the problem of modeling a
intrinsically discrete system, here discreteness is rega
rather as an unavoidable numerical nuisance one mus
count for, in order to interpret correctly the simulation ou
come. In one dimension, algorithmic discreteness is m
sured by the ratioe5Dx/d, where Dx is the spatial
quantization step andd denotes the spatial extension of th
single soliton~that is, the intrinsic elastic string length!; sup-
posedly, on takingd large, discreteness corrections wou
vanish. This general rule proved correct in the overdam
limit a0@v0, where all speeds involved are much smal
than the string-limiting speedc0 and all relevant relaxation
mechanisms occur at rates of the order of the viscous c
stant a0, that is, much larger than the intrinsic string fr
quencyv0. However, in the opposite limit,a0!v0, solitons
behave like ultrarelativistic particles with average speeu
close toc0. The effective soliton size,d(u)5dA12u2/c0

2,
then shrinks to values smaller than the string length~note
thatd[c0 /v0) and possibly even shorter than the chain co
stantDx; as a result, regardless of the ratioDx/d, the driven
soliton eventually perceives the discrete structure of its s
port and starts radiating phonons@7–11#.
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Phonon radiation by a discrete soliton has a simple qu
tative explanation: As a soliton moves between two adjac
chain sites, its shape gets modulated periodically in ti
with a certain angular frequencyvS . Moreover, the phonon
spectrum in the presence of the soliton is characterized b
sinusoidal band with the dispersion relationv( i )25v0

2@1
1(4/e2)sin2(pi/2N)#. If vS.v0, the soliton modulation
couples directly with one or more phonon modes; radiat
takes place with an intensity that increases with the ch
discreteness. IfvS,v0, a less effective soliton-phonon cou
pling occurs through a parametric resonance mechanism
volving higher harmonics, i.e.,nvS5mv0 with n21m2

.2. The ensuingphonon dampinghas been investigated nu
merically for africtionlesssoliton ~i! coming to a halt along
a strongly discrete chain@8,9# and ~ii ! oscillating between
two chain sites@11#. In both cases, bursts of resonant phon
radiation have been reported@12#. Phonon damping has bee
analyzed also under stationary conditions@13#, where an un-
derdamped, continuous, one-soliton bearing string is m
tained in thermal equilibrium. Due to the coupling with th
phonon bath, the soliton undergoes Brownian motion w
the frequency-dependent damping constanta(v)5a0
2 ia1(v/v0)1a2(v/v0)21•••, where a0 is the bare
string-damping constant.

In this preliminary report, we investigate the stationa
propagation of a driven soliton along a discretef4 chain
paying particular attention to the effects of phonon dampi
The soliton mobility curves are shown to exhibit sequen
of discontinuous jumps that cannot be interpreted in term
phonon radiation resonances alone. We identify positivel
phonon-assisted pinning transition and the occurrence of
crete breather radiation.

Most of the results reported here are likely to apply to t
sine-Gordon~SG! chain as well. We focused our study o
the f4 soliton because~a! no coherent depinning of thef4

chain from the substrate may take place at variance with
SG chain@16,17#; ~b! no multikink solutions are allowed
that, unlike the SG case, may be less subjected to pho
damping than the relevant single kink solution@8#; ~c! the
existence of a continuumf4 soliton shape mode, with fre
quency smaller thanv0 @2#, is a minor inconvenience ate
.0, where internal modes branch off the discrete phon
band, even in the SG case@14#.
©2001 The American Physical Society11-1
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II. PHONON RADIATION

We simulated@15# a one-solitonbearingf4 chain

f̈ i2c0
2D2f i1V8@f i #5F2a0ḟ i1z i~ t !, ~1!

with i 51,2, . . . ,N, where Dx51, D2f i5f i 111f i 21
22f i , z i(t) denotes local Gaussian noise sources w
^z i(t)&50 and^z i(t)z j (0)&52a0kTd i j d(t), andV@f# de-
notes the on-site potential (v0

2/8)(f221)2. The chain$f i%
is a free-end chain (f05f1 ,fN115fN) with f1.71 and
fN.61 for a kink (f1) or an antikink (f2), respectively,
and long enough for the diffusing soliton not to experien
boundary forces. The viscous term2a0ḟ i and the noise
sourcesz i(t) guarantee thermalization of the chain at te
peratureT, while a positive constant forceF drivesf1 to the
left andf2 to the right.

The diffusion of a single soliton along a fluctuating cha
is well described~apart from inessential terms! by the rela-
tivistic Langevin equation~LE! @2–5#

ṗ52ap2VPN8 ~X!72F1j~ t !, ~2!

wherej(t) is a stationary Gaussian noise with zero mean
autocorrelation function ^j(t)j(0)&52aMlkTd(t), Ml
.M052/3d approximates the average discrete~anti!kink
mass@18#, and p(u)5M0u/A12u2/c0

2 can be regarded a
the momentum of a relativistic soliton with center-of-ma
coordinateX. Discreteness breaks thef6 translational in-
variance by generating a periodic Peierls-Nabarro~PN! po-
tential VPN(X) @6# with constantDX5Dx51; within the
accuracy of our numerics@18#, VPN is well described by the
cosine potential

VPN~X!5
kPN

4p2 @11cos~2pX!#, ~3!

whose amplitude diverges exponentially withe @7,10,11#.
The stochastic processX(t) was sampled as follows: A

regular time intervalsTX ~typically TX510), copies of the
chain configuration were recorded and then fed throug
filtering routine that makes the chain evolve further in tim
at zero temperature and a much larger chain damping
stant,ā0@v0; as a result, the~anti!kink gets frozen almos
instantaneously between two adjacent chain sites. The e
ing quantization~with unit step! of the sampled soliton tra
jectory,Xn5X(nTX), has no bearing on the statistics of o
simulations, provided that the displacements measured
conveniently long andTX is chosen to be shorter than an
relevant time scale in the problem~but much larger than the
freezing timeā0

21). From the time dependence ofX(t), one
then determines the kinetic variablesu(t) andp(t).

In order to characterize the soliton damping constanta in
Eq. ~2! we plotted the stationary~average! soliton momen-
tum p(F) versus the driving forceF in the noiselesscase
T[0, for different values of the discreteness parametee
~Fig. 1! and of the string damping constanta0 ~Fig. 2!. Our
results can be summarized as follows.~i! p(F) is finite for
any value ofe and, more remarkably, even ata050. Note
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that for the smalleste value reported in Fig. 1, the stati
soliton parameters are almost indistinguishable from the c
tinuum limit ~e.g.,Ml andM0 coincide within three signifi-
cant digits@18#!. ~ii ! At variance with the overdamped limit
p(F) is never proportional toF, not even above the depin
ning thresholdF35kPN/4p ~see Fig. 2!; the curvesp(F) get
flatter and flatter fore tending to zero, as illustrated by th

FIG. 1. Stationary soliton momentum~absolute value! p(F) ver-
susF for a050, T50, and different values ofe ~for convenience
v0 was kept constant,v0

258). A stationary value ofp(t) corre-
sponds to the asymptotic behavior of the soliton trajectory,X(t)
}t. Jumps due to phonon coupling,Fnm , and breather radiation
FB , are marked by vertical arrows; the pinning thresholdsF1 are
represented by dotted lines. The curve branches withp.p0 have
been fitted by means of the heuristic law2n11A2(F2F0)/an ,
where n has been setad hoc to increase with decreasinge ~see
labels!. These curves do not depend on the initial conditions, p
vided that the chain evolves eventually towards a stationary runn
state.

FIG. 2. p(F) versusF for e52.0, T50, v0
258, and increas-

ing values ofa0. The pinning,F1, and depinning thresholds,F3, of
each curve are marked by downward and upward oriented do
lines, respectively. The solid fitting curves have been drawn
solving Eq.~5!, after truncation atn51: on raisinga0, the fitted
parameter values are (a1 ,F0)5(0.207,0.038), (0.207,0.038), an
(0.207,0.049). The dashed fitting curve for the overdamped c
a0 /v051.0, see Ref.@18#, is reported for the sake of compariso
1-2
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heuristic fits of Fig. 1.~iii ! All the curves plotted in Figs. 1
and 2 exhibit an upper branch that starts out discontinuo
at p0[p(u0) with u05v0/2p,c0. In fact, solitons with av-
erage speedu.u0 get modulated in shape with frequencyvS
larger thanv0, i.e., they exchange energy directly with th
phonon modes@8#. ~iv! Such a property is robust towards th
string viscosity, as the gap atp5p0 smooths out into a cusp
only for a0 /v.0.1. ~v! For p,p0 and relatively strong dis-
creteness, thep(F) curves show a number of steplike di
continuities, or jumps, that end at a minimum threshold va
F1 of the driving force, below which no stable running sta
could be observed, despite our initial condition search@19#
and at odds with an earlier simulation by Peyrard a
Kruskal @8#. Therefore, we conclude that, as an effect
discreteness, a sharppinning transition takes place atF
5F1. In the noiseless limit, the soliton response to the
ternal drive in the intervalF1<F<F3 displays a hysteretic
dependence on the initial conditions@16,17#; therefore, the
mobility data reported in Figs. 1 and 2 refer to the init
string configurations that sustain stationary soliton runn
states@19#.

III. PHONON DAMPING

We interpret now the outcome of our simulation. We f
cus first on the ultrafast solitons withp.p0. As anticipated
above, due to the Lorentz contraction, accelerated relativ
solitons end up ‘‘interacting’’ with the chain sites and th
radiating phonons. In view of the formal analysis of R
@13#, we assume that the ensuing~average! phonon damping
can be reproduced quite generally by the nonlinear visc
term

ap→a~p!p5a0p1a1p31•••1anp2n111•••, ~4!

wherea0 is the bare string damping constant and the rema
ing coefficientsan can be fitted, at least in principle, from
the simulation data. A rough estimate of the stationaryp
value at zero temperature follows immediately from t
‘‘mean-field’’ equation

ṗ5052a0p2a1p32•••2anp2n112•••72~F2F0!,
~5!

where the additional tiltF05F0(a0 ,e) mimics the average
effect of the PN potential~3! @20#. In the regime of strong
discreteness, saye>2, Eq. ~5! may be safely truncated a
n51. In the frictionless case,a050, one obtains the two
parameter fitting curvep(F)5A3 2(F2F0)/a1, whereas for
finite but small values of the string damping consta
a0 /v0,0.1, the stationary soliton momentum coincid
with the real root of the cubic equation~5! with n51. This
interpretation of our results is confirmed quantitatively
Fig. 2, where, in the underdamped limit, the fitted parame
a1 and F0 appear not to depend ona0. Our fits show that
even for a0 /v050.1, phonon damping is still appreciab
and decoupled from the string damping~i.e., a1 is indepen-
dent ofa0); on the contrary,F0 grows witha0, as suggested
in Ref. @20#. On loweringe, one expects that the coefficien
an , with n.1, fall off exponentially@6,7,10#; as a result,
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the stationary solution~5! for p would be dominated by in-
creasingly higher powers,n, of the phenomenological expan
sion ~4! ~see the fits of Fig. 1!.

Phonon radiation is responsible for the renormalization
the viscous term~4!. Snapshots of a propagatingf4 kink are
displayed in Fig. 3 for different values ofe, F, and a0.
Each kink is followed by a phonon trail, its amplitude bein
much larger forp.p0 ~direct soliton-phonon coupling! than
for p,p0 @resonant coupling, Figs. 3~a! and 3~b!#, and
quenched by the string damping over a characteristic atte
ation lengthu/a0 @Fig. 3~c!#. While phonon radiation from
traveling discrete solitons has been reported in@8–11#, and
even earlier@21#, our simulation revealed that the phonon ta
points opposite to the applied drive,independentlyof the
actual direction of kink propagation. We accelerated a fr
tionless kink to the left@like in Fig. 3~a!# by applying a
constant forceF; upon reflection, the kink bounces to th
right against the driving force~not displayed!. Quite surpris-
ingly ~see Refs.@8,22#!, the phonon tail looks now to build
up in the forward direction@a chain snapshot would be a
most indistinguishable from Fig. 3~a!#.

We address now the discontinuous jumps of the soli
mobility for p,p0 andzero temperature, where the phenom-
enon of resonant phonon radiation is expected to play a
role @8,11#. The pinning step atF5F1(a0 ,e) is a very ro-
bust feature, as it persists even for values of the string da
ing constant where thep5p0 jump disappears~see Fig. 2!.
Although the thresholdF1 could be determined with ex
tremely high precision, we could not relate the underlyi
pinning mechanism to any abrupt change in the soliton
namics, such as the emission of phonon bursts@11#, the onset
of internal oscillations@23#, or the like: The soliton simply
stops propagating and its kinetic energy is gradually giv
away in the form of symmetrically dispersing string oscill
tions.

The remaining jumps, more numerous upon raisinge
above 1, fall into two categories.~i! Soliton-phononcou-
pling, nvS5mv0 @8,11#, with relevant resonance threshold

FIG. 3. Phonon radiation by a propagating kink for differe
values of a0 , F, and e and the samex scale ~see labels!. All
snapshots refer to stationary states from Fig. 2 and were taken
106, or more, integration steps withDt51023.
1-3
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at Fnm . The ubiquitous thresholdF11 corresponds to thep
5p0 jump, whereas a thresholdF21 can be recognized pos
tively in Fig. 1 only for the strongest discreteness case sim
lated. Higher-order steps withm.1 andn.2 could not be
safely identified, due to the presence of the pinning tran
tion; even at highere values~not shown!, the expected jump
size is too small to be statistically appreciable.~ii ! Soliton-

FIG. 4. Stationary soliton momentum~absolute value! p(F) ver-
susF for a0 /v050.01, v0

258, e52, and different values ofkT
~in units of kPN/4p2). The pinning thresholdsF1 and F2 ~see the
text! are marked by dotted lines. Simulation parameters: integra
step,Dt51023; run length, 53106 integration steps. Note that fo
the smallestkT value simulated, a more accurate definition of t
~continuous! transition step would require exceedingly long com
puter runs.
hy

ep
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breathercoupling. To the best of our knowledge, this is th
first instance where a relativistic kink is shown to radiate
discrete doublet@or breather, see Fig. 3~d!#. A discrete chain
is known to bear bound kink-antikink states@24# with dis-
crete energy levels in the range (0,2E0), with E05M0c0

2.
Such structures are unstable under the action of the radia
soliton@25#, not to mention the external drive; breather em
sion implies a high activation threshold, which may only
overcome in the regime of strong discreteness.

Finally, in Fig. 4 we assessed the stability of the pinni
mechanism in the presence of thermal fluctuations. At fin
temperature~i.e., for kT of the order ofkPN/4p2 or smaller!,
the pinning jump atF5F1 is replaced by an abrupt surge o
the p(F) curve from zero up to its noiseless value, while t
hysteretic dependence on the initial string configuration
suppressed. On decreasing the string temperature, the
ning jump approaches, and gets more and more confi
around a newT501threshold F2(a0 ,e). The thresholds
F1 andF2 are not immediately related to the underlying kin
PN potential@10#, nor to long-range string interactions as
Ref. @26#: Soliton pinning is caused here primarily b
discreteness-induced phonon radiation. At higher tempera-
tures, the pinning transition smooths out, as the role of re
nant phonon damping gets less and less appreciable. On
contrary, the stationary momentum of ultrafast solitons
pends marginally on the string temperature, thus sugges
that for p.p0 direct phonon damping retains a promine
role even at finite temperature.

We acknowledge partial support from the Michigan Ce
ter for Theoretical Physics~MCTP!, University of Michigan
~Ann Arbor!.
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