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Driven kinks in discrete chains: Phonon damping
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Phonon radiation is shown numerically to damp the motion of a relativistically depfesoliton, even in the
extremely weak discreteness limit. At higher discreteness, the soliton mobility is characterized by a discon-
tinuous dependence on the driving force; jumps are related to phonon and breather-radiation thresholds.
Moreover, the speed offactionlesssoliton cannot be lowered below a certain threshold value, or else it might
get trapped between two adjacent chain sites.
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[. INTRODUCTION Phonon radiation by a discrete soliton has a simple quali-
tative explanation: As a soliton moves between two adjacent
A variety of physical systems have been modeled in termghain sites, its shape gets modulated periodically in time
of an elastic string diffusing on a periodic substrate, remarkwith a certain angular frequeneys. Moreover, the phonon
able examples being lattice dislocations, magnetic flux linespectrum in the presence of the soliton is characterized by a
in type-Il superconductors, triple lines on wetting surfacessinusoidal band with the dispersion relatio(i)?= wg[ 1
magnetic spin chains, etl]. All these string models belong + (4/€®)sin(@i/2N)]. If ws>w,, the soliton modulation
to the category of soliton-bearing theories, where stringcouples directly with one or more phonon modes; radiation
transport results from thiateral diffusion of single solitons ~t@kes place with an intensity that increases with the chain
(kinks or antikink$ connecting two adjacent substrate val- discreteness. libs<wo, a less effective soliton-phonon cou-
leys. Propagation of solitons in a viscous medium is by nowP!ing occurs through a parametric resonance me%hanlzsm In-
a fairly well-understood problem in the continuum limit VOIVing higher harmonics, i.enws=mawy with n“+m
[2—6]. However, with a closer look, all the above-mentioned= 2+ The ensuinghonon dampingas been investigated nu-

physical systems imply a certain degree difcreteness merically for africtionlesssoliton (i) coming to a halt along

stemming from the atomistic structure of the solid phasea strongly discrete chaifB,9] and (ii) oscillating between

. o . . two chain site$11]. In both cases, bursts of resonant phonon
(i.e., of the string itself and/or of its environmené,7]. diation h b 1 Ph q ina has b
There is one more reason for investigating the effects o adiation have been repqrté 1. P onon camping has been
. ) . . . nalyzed also under stationary conditi¢@8], where an un-
discreteness: Simulation algorithms necessarily replace

. . . X i aerdamped, continuous, one-soliton bearing string is main-
continuous stringh(x,t) with a discrete chairi¢;(t)}, by tained in thermal equilibrium. Due to the coupling with the

coarse graining the spatial coordinateas iAx with i phonon bath, the soliton undergoes Brownian motion with

_=1_, S N. A_t variance with the pro_blem of mod_eling an the frequency-dependent damping constamfw)= ay
intrinsically discrete system, here discreteness is regardedial(w/w0)+a2(w/a,o)2+..., where «a, is the bare

rather as an unavoidable numerical nuisance one must agtring-damping constant.

count for, in order to interpret correctly the simulation out- | this preliminary report, we investigate the stationary
come. In one dim_ension, algorithmic disgreteness is_ Meapropagation of a driven soliton along a discreté chain
sured by the ratioe=Ax/d, where Ax is the spatial paying particular attention to the effects of phonon damping.
quantization step and denotes the spatial extension of the The soliton mobility curves are shown to exhibit sequences
single soliton(that is, the intrinsic elastic string lengtlsup-  of discontinuous jumps that cannot be interpreted in term of
posedly, on takingd large, discreteness corrections would phonon radiation resonances alone. We identify positively a
vanish. This general rule proved correct in the overdampe@honon-assisted pinning transition and the occurrence of dis-
limit ag>wo, Where all speeds involved are much smallercrete breather radiation.

than the string-limiting speed, and all relevant relaxation  Most of the results reported here are likely to apply to the
mechanisms occur at rates of the order of the viscous COrsine-Gordon(SG) chain as well. We focused our study on
stant ag, that is, much larger than the intrinsic string fre- the ¢* soliton becauséa) no coherent depinning of the*
quencywg. However, in the opposite limizo<wy, solitons  chain from the substrate may take place at variance with the
behave like ultrarelativistic particles with average speed SG chain[16,17; (b) no multikink solutions are allowed
close toc,. The effective soliton sized(u)=d\1—u?c3,  that, unlike the SG case, may be less subjected to phonon
then shrinks to values smaller than the string lengtbte  damping than the relevant single kink solutif8l; (c) the
thatd=c,/w) and possibly even shorter than the chain con-existence of a continuung* soliton shape mode, with fre-
stantAx; as a result, regardless of the rafia/d, the driven  quency smaller thamg [2], is @ minor inconvenience at
soliton eventually perceives the discrete structure of its sup=0, where internal modes branch off the discrete phonon
port and starts radiating phonofia-11]. band, even in the SG caf&4].
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II. PHONON RADIATION

We simulated 15] a one-solitonbearing¢* chain (& n)=064

bi— iAo+ V' [ 1=F—apgdi+ &i(1), (1)

with i=1,2,... N, where Ax=1, A2¢i: ¢i+1+ ¢i—l
—2¢;, ¢(t) denotes local Gaussian noise sources with Pis
(£i(1))=0 and({;(t)£;(0))=2akT5; &(1), and V[ ¢] de-

notes the on-site potentiatof/8)(¢>—1)2. The chain{¢;} 1.0
is a free-end chaindy= ¢, dn+ 1= Pn) With ¢p1==+1 and y
¢n==1 for a kink (¢, ) or an antikink _), respectively, 0.5
and long enough for the diffusing soliton not to experience

boundary forces. The viscous termaqe; and the noise - 005 ol 015 02

sources((t) guarantee thermalization of the chain at tem- F

peraturel, while a positive constant fordedrives¢ , to the

left and ¢_ to the right. FIG. 1. Stationary soliton momentu¢absolute valugp(F) ver-
The diffusion of a single soliton along a fluctuating chain SUSF for «=0, T=0, and different values of (for convenience

2_ .
is well describedapart from inessential termsy the rela- @0 Was kept constaniy;=8). A stationary value op(t) corre-
tivistic Langevin equatioLE) [2—5] sponds to the asymptotic behavior of the soliton trajectixt,)
o«t. Jumps due to phonon coupling,,, and breather radiation,

) Fg, are marked by vertical arrows; the pinning threshdidsare

represented by dotted lines. The curve branches pittp, have
feen fitted by means of the heuristic lah 2 (F—Fo)/
wheren has been sead hocto increase with decreasing (see
labelg. These curves do not depend on the initial conditions, pro-
vided that the chain evolves eventually towards a stationary running
state.

p=—ap—Vh(X) T 2F+&(1),

whereé(t) is a stationary Gaussian noise with zero mean an
autocorrelation  function (&(t) £(0))=2aM kTS(t), M,
=My=2/3d approximates the average discréantikink
mass[18], and p(u)zMou/\/l—uzlco2 can be regarded as
the momentum of a relativistic soliton with center-of-mass

coordinateX. Discreteness breaks thg. translational in- that for the smallest value reported in Fig. 1, the static
variance by generating a periodic Peler|S-Nab&_F"_91) PO-  soliton parameters are almost indistinguishable from the con-
tential Vpy(X) [6] with constantAX=Ax=1; within the  tinyum limit (e.g.,M, and M, coincide within three signifi-
accuracy of our numeriddl8], Vpy is well described by the  cant digits[18]). (ii) At variance with the overdamped limit,

cosine potential p(F) is never proportional td&, not even above the depin-
K ning threshold=;=kp\/47 (see Fig. 2, the curvesp(F) get
Ven(X) = 4—$[l+cos(27rx)], (3) flatter and flatter fore tending to zero, as illustrated by the

whose amplitude diverges exponentially wih7,10,11. L

The stochastic proces§(t) was sampled as follows: At 1.2
regular time intervalsTy (typically Tx=10), copies of the
chain configuration were recorded and then fed through a 1.0
filtering routine that makes the chain evolve further in time, I
at zero temperature and a much larger chain damping con—po'g_—

stant,ag>wg; as a result, théantjkink gets frozen almost 0.6
instantaneously between two adjacent chain sites. The ensu-

ing quantization(with unit step of the sampled soliton tra- 0.4
jectory, X,=X(nTyx), has no bearing on the statistics of our
simulations, provided that the displacements measured are 02
conveniently long and’y is chosen to be shorter than any
relevant time scale in the probletbut much larger than the

freezing timez(}l). From the time dependence X{t), one
then determines the kinetic variableét) andp(t).

| d h . h i d ! . FIG. 2. p(F) versusF for e=2.0, T=0, w§=8, and increas-
n order to characterize the soliton damping constant ing values ofag. The pinningF4, and depinning thresholdBg, of

Eq. (2) we plotted the stationarjaverage soliton momen- o ¢ curve are marked by downward and upward oriented dotted
tum p(F) versus the driving forcé& in the noiselesscase  |ines, respectively. The solid fitting curves have been drawn by
T=0, for different values of the discreteness parameter solving Eq.(5), after truncation an=1: on raisinga,, the fitted
(Fig. 1) and of the string damping constasm} (Fig. 2). Our  parameter values arex(,Fo)=(0.207,0.038), (0.207,0.038), and
results can be summarized as followi. p(F) is finite for ~ (0.207,0.049). The dashed fitting curve for the overdamped case
any value ofe and, more remarkably, even ap=0. Note  «y/wy=1.0, see Ref[18], is reported for the sake of comparison.
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heuristic fits of Fig. 1(iii) All the curves plotted in Figs. 1
and 2 exhibit an upper branch that starts out discontinuously
atpo=p(ug) with ug= we/2T<cy. In fact, solitons with av-
erage speed>u, get modulated in shape with frequeney I e
larger thanwg, i.e., they exchange energy directly with the
phonon mode§8]. (iv) Such a property is robust towards the RUIESS
string viscosity, as the gap pt=p, smooths out into a cusp
only for ag/w>0.1. (v) For p<pg and relatively strong dis-
creteness, th@(F) curves show a number of steplike dis-
continuities, or jumps, that end at a minimum threshold value
F, of the driving force, below which no stable running state
could be observed, despite our initial condition sedrt®) gl g=0.0 =00 =001
and at odds with an earlier simulation by Peyrard and F =0.055 =0.065 =0.065 |=0.19
Kruskal [8]. Therefore, we conclude that, as an effect of e=2.0 =20 =20 =22
discreteness, a shanpnning transition takes place at S — —
=F,. In the noiseless limit, the soliton response to the ex-
ternal drive in the intervaF,;<F<Fj displays a hysteretic FIG. 3. Phonon radiation by a propagating kink for different
dependence on the initial conditio$6,17]; therefore, the values of ey, F, and e and the same scale (see labels All
mobility data reported in Figs. 1 and 2 refer to the initial snapshots refer to stationary states from Fig. 2 and were taken after
string configurations that sustain stationary soliton runninglo®, or more, integration steps witht=10"3.

stateq 19].

a) b) c) d)

=0.0

the stationary solutioi(5) for p would be dominated by in-
Ill. PHONON DAMPING creasingly higher powers, of the phenomenological expan-
. ) ) sion (4) (see the fits of Fig. 1

We interpret now the outcome of our simulation. We fo-  pponon radiation is responsible for the renormalization of
cus first on the ultrafast solitons with™>p,. As anticipated  tne viscous ternt4). Snapshots of a propagatieg kink are
above, due to the Lorentz contraction, accelerated relativistiaisp|ayed in Fig. 3 for different values of, F, and ay.
solitons end up “interacting” with the chain sites and thus gach kink is followed by a phonon trail, its amplitude being
radiating phonons. In view of. the formal analysis of_ Ref. much larger fop> p, (direct soliton-phonon couplinghan
[13], we assume that the ensuifayerage phonon damping ¢, p<p, [resonant coupling, Figs.(® and 3b)], and

can be reproduced quite generally by the nonlinear viSCOU§enched by the string damping over a characteristic attenu-
term ation lengthu/a, [Fig. 3(c)]. While phonon radiation from

— 3 2n+1 traveling discrete solitons has been reported8r11], and
ap=a(p)p=aoPp+agp it - Fagp™ i () ee?rliefZl], our simulation revealedpthat the phonon tail
whereaqy is the bare string damping constant and the remainPoints opposite to the applied drivéndependentlyof the
ing coefficientse,, can be fitted, at least in principle, from actual direction of kink propagation. We accelerated a fric-
the simulation data. A rough estimate of the stationpry tionless kink to the lefflike in Fig. 3@] by applying a
value at zero temperature follows immediately from theconstant forcer; upon reflection, the kink bounces to the

“mean-field” equation right against the driving forcénot displayed Quite surpris-
ingly (see Refs[8,22]), the phonon tail looks now to build
p=0=—aop—aip3— - —a,p - . F2(F—Fy), up in the forward directioria chain snapshot would be al-

(5 most indistinguishable from Fig.(8].

We address now the discontinuous jumps of the soliton
where the additional tilfo=Fq(eo,€) mimics the average mobility for p<p, andzero temperaturevhere the phenom-
effect of the PN potentiad3) [20]. In the regime of strong enon of resonant phonon radiation is expected to play a key
discreteness, say=2, Eq.(5) may be safely truncated at role [8,11]. The pinning step aE=F;(aq,€) is a very ro-
n=1. In the frictionless casey,=0, one obtains the two- pust feature, as it persists even for values of the string damp-
parameter fitting curvqa(F):s\/Z(F— Fo)/a;, whereas for ing constant where thp=p, jump disappeargsee Fig. 2
finite but small values of the string damping constant,Although the thresholdm; could be determined with ex-
ao/w<<0.1, the stationary soliton momentum coincidestremely high precision, we could not relate the underlying
with the real root of the cubic equatigs) with n=1. This  pinning mechanism to any abrupt change in the soliton dy-
interpretation of our results is confirmed quantitatively innamics, such as the emission of phonon byrkt$ the onset
Fig. 2, where, in the underdamped limit, the fitted parametersf internal oscillationd 23], or the like: The soliton simply
a; andF, appear not to depend am,. Our fits show that stops propagating and its kinetic energy is gradually given
even forag/wy=0.1, phonon damping is still appreciable away in the form of symmetrically dispersing string oscilla-
and decoupled from the string dampifige., a; is indepen-  tions.
dent ofag); on the contraryf, grows witha, as suggested The remaining jumps, more numerous upon raising
in Ref.[20]. On loweringe, one expects that the coefficients above 1, fall into two categoriegi) Soliton-phononcou-

a,, with n>1, fall off exponentially[6,7,10; as a result, pling, nws=mw, [8,11], with relevant resonance thresholds
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FIG. 4. Stationary soliton momentugabsolute valugp(F) ver-
susF for ag/wy=0.01, w(z):8, e=2, and different values dfT
(in units of kpp/47?). The pinning threshold&, andF, (see the
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breathercoupling. To the best of our knowledge, this is the
first instance where a relativistic kink is shown to radiate a
discrete doubleftor breather, see Fig(@)]. A discrete chain

is known to bear bound kink-antikink statE24] with dis-
crete energy levels in the range (Bg, with E0=M0cg.
Such structures are unstable under the action of the radiating
soliton[25], not to mention the external drive; breather emis-
sion implies a high activation threshold, which may only be
overcome in the regime of strong discreteness.

Finally, in Fig. 4 we assessed the stability of the pinning
mechanism in the presence of thermal fluctuations. At finite
temperaturdi.e., forkT of the order ofkpp/47 or smalley,
the pinning jump aF =F, is replaced by an abrupt surge of
the p(F) curve from zero up to its noiseless value, while the
hysteretic dependence on the initial string configuration is
suppressed. On decreasing the string temperature, the pin-
ning jump approaches, and gets more and more confined
around a newT =0+threshold F,(aq,€). The thresholds

text) are marked by dotted lines. Simulation parameters: integratiofr 1 andF are not immediately related to the underlying kink

step,At=10"3; run length, 5<1Cf integration steps. Note that for

PN potential[10], nor to long-range string interactions as in

the smalleskT value simulated, a more accurate definition of the Ref. [26]: So_Iiton pinning is Cal_JS?d hgre primarily by
(continuous transition step would require exceedingly long com- discreteness-induced phonon radiatiokt higher tempera-

puter runs.

at F,,. The ubiquitous threshol#,; corresponds to the
=po jump, whereas a threshok,, can be recognized posi-

tively in Fig. 1 only for the strongest discreteness case sim

lated. Higher-order steps witm>1 andn>2 could not be

safely identified, due to the presence of the pinning transi-

tion; even at highee values(not shown, the expected jump
size is too small to be statistically appreciaki¢) Soliton-

u_

tures, the pinning transition smooths out, as the role of reso-
nant phonon damping gets less and less appreciable. On the
contrary, the stationary momentum of ultrafast solitons de-
pends marginally on the string temperature, thus suggesting
that for p>p, direct phonon damping retains a prominent
role even at finite temperature.
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